SELECTIVE OXIDATION OF *GEM*-DISULPHIDES TO MONOSULPHONE DERIVATIVES

M. Poje and K. Balenović

Department of Organic Chemistry, University of Zagreb, Strossmayerov trg 14, 41000 Zagreb, Croatia, Yugoslavia

(Received in UK 14 February 1978; accepted for publication 17 February 1978)

Backer¹ reported in 1946 that potassium permanganate in acetone solution oxidized dimethylthiomethane (<u>la</u>) to the corresponding disulphoxide. However, careful reinvestigation of this procedure in our laboratory demonstrated that the product was methylsulphonylmethylthiomethane (<u>2a</u>). Although the spectral data² were consistent with the monosulphone structure, definitive proof was obtained through synthesis by an alternative route according to Böhme and Heller³.

An adaptation of the permanganate procedure afforded the monosulphone 2a in 70% yield. This method was extended to a series of *gem*-disulphides, sufficiently varied to demonstrate the selectivity and scope of the reaction.

We have now found that the monosulphones 2a-g can be prepared directly from the corresponding gem-disulphides $1a-g^4$ by oxidation with potassium permanganate in acetone at 0° . The reaction proceeded at rather slow rate and no detectable amounts (TLC) of sulphoxides were formed at any stage. The mechanism of the oxidation is unclear; under the same conditions 1,2-di(tert-butylthio)-ethane $(3)^5$ was over-oxidized to the disulphone <u>4</u> (95%, m.p. $230-1^{\circ})^6$, suggesting the requirement of gem-grouping for selective conversion into monosulphones.

т	а	b	1	е	:

gem-Sulphonyl-sulphides 2

Compd ^a	Yield ^{b}	Recrystn solvent	m.p. (⁰ C) ^c	vS02(c	m ⁻¹) ^d	Prepn of <u>1</u>		
<u>a</u>	70%	ethanol	51-2	1289	1117	(1)		
b	888	CCl ₄ -hexane	116-7	1295	1113	(4a)		
<u>c</u>	81%	ethanol	40-1	1290	1113	(4b)		
<u>d</u>	80%	ethanol	60-1	1290	1107	(4c)		
e	89%	CH ₂ Cl ₂ -hexane	115-6	1286	1127	(4d)		
<u>f</u>	85%	CH ₂ Cl ₂ -hexane	131-2	1300	1130	(4d)		
g	77%	CHCl ₃ -hexane	185-6	1302	1130	(4e)		
a) Satisfactory analytical (± 0.3 % for C,H,N and S), and NMR (in CDCl ₃) spectral data were obtained for all new compounds listed in Table. b) Yields are based on recrystallized products. c) M.ps. are uncorrected. d) IR spectra (in KBr).								

<u>General procedure</u> : The oxidation is conveniently carried out by gradual addition of finely powdered potassium permanganate (0.06 moles) to a stirred solution of gem-disulphide ($\underline{1}$, 0.02 moles) in acetone (100-150 ml) at -5° C. An additional amount of permanganate (0.04 moles) was added in several portions in the course of five days. When the reaction is complete (8-10 days at 0°), the precipitated manganese dioxide was filtered off, the solvent removed, and the residue purified by crystallization from an appropriate solvent. From the mother liquors 6-10% of unchanged gem-disulphide $\underline{1}$ could be recovered. In summary, the method is highly specific, it encompasses a variety of gem--disulphides, and excellent yields are obtainable under mild conditions⁷.

REFERENCES AND NOTES

- 1. H.J. Backer, *Reo.trav.chim.* <u>65</u>,53(1946) obtained the compound, m.p. $51-2^{\circ}$, in 24% yield. Failure of this product to react with MeI, or give an additional product with HgCl₂, has eliminated the alternative monosulphone structure.
- 2. We found no infrared bands ascribable to sulphoxides, while the NMR spectrum displayed three singlets at δ 3.88 (*CH*₂), 3.03 (*SO*₂*Me*), and 2.40 (*SMe*); the apparent discrepancy between this spectrum and those of both disulphoxides was overlooked by R.Louw and H.Nieuwenhuyse, *Chem.Comm.* 1968,1561.
- 3. H.Böhme and P.Heller, *Chem.Ber.* <u>86</u>,785(1953) prepared <u>2a</u>, m.p. 50-1⁰, in a poor yield, from chloromethyl methyl sulphone through several steps. This compound was identical in all respects with our oxidation product <u>2a</u>.
- 4. a) H.J.Backer and P.Stedehouder, *Rec. trav. chim.* <u>52</u>,437(1933). b) D.T.Gibson, *J. Chem. Soc.* <u>1931</u>,2640. c) B.P.Fedorov and I.S.Saveleva, *Izvest. Akad. Nauk SSSR*, *otdel Khim. Nauk* <u>1950</u>,223. d) New compounds <u>1e</u>, m.p. 48-9°(EtOH), and <u>1f</u>, m.p. 40-1°(EtOH), were prepared in 70-80% yields by method of H.J. Boonstra,L.Brandsma,A.M.Wiegman and J.F.Arens, *Rec. trav. chim.* <u>78</u>,252(1959).
 e) A.Deljac,Z.Štefanac and K.Balenović, *Tetrahedron* <u>22</u>, Suppl.<u>8</u>, 33(1966).
- 5. H.B.Henbest, J.A.W. Reid and C.J.M. Stirling, J. Chem. Soc. 1964, 1220.
- 6. H.J.Backer, J.Strating and J.F.A.Hazenberg, *Rec. trav. chim.* 72, 813(1953) have reported the same m.p. 230-1° for 1,2-di(*tert*-butylsulphonyl)-ethane.
- 7. This research was assisted financially by the Croatian Research Foundation.